

PrairieLearn Information for CEE 202 - CEE @ Illinois

[image: documentation status] [http://pl-cee202-docs.readthedocs.io/en/latest/?badge=latest]

Author: Dr. Zhonghua Zheng (zhonghua.zheng@outlook.com)

This website provides the information about how to set up and use
PrairieLearn [https://prairielearn.readthedocs.io/en/latest/] tailored for CEE 202 [http://catalog.illinois.edu/courses-of-instruction/cee/] - Engineering Risk & Uncertainty.

PrairieLearn [https://prairielearn.readthedocs.io/en/latest/] is an online problem-driven learning system for creating homeworks and tests.

Table of Contents

Students

	How to Access PrairieLearn?

Instructors/TAs

	How to Run PrairieLearn?
	Install and check (for first time users)

	Routine work

	Numerical Answers with R
	Overview

	Step 1: Copy a R question

	Step 2: Modify the questions

	Alternatives: Integer

	Step 3: Test your questions

	Step 4: Commit and push the changes

	Step 5: Sync and test

	Appendix: Answers from R function output

	Numerical Answers with Python
	Overview

	Step 1: Copy a question

	Step 2: Modify the questions

	Alternatives: Integer

	Step 3: Test your questions

	Step 4: Commit and push the changes

	Step 5: Sync and test

	Multiple Choice
	An example of the question.html

	Conditional Answers

	Customizations

	Checkbox
	An example of the question.html

	Another example question R autograder
	About

	Directory Structure

	Explaining the files

	Closing statement

	Review of autograding example R notebook
	About

	Directory Structures

	Explaining the files

	Subdirectory: tests

	Subdirectory workspace

	Testing gradability of your R Notebook
	Setting up local development environment

	Adding notebook to course directory

	Testing

	Deploying to live PL

	Final Thoughts

	List of Topics and Tags
	Topics

	Tags

	Grade Transfer from PL to Compass

	Attendance and muddiest point compilation
	Summary

	Description

	Running the code

Website Developers

	Markdown Introduction
	What is Markdown?

	How to open and create the Markdown files?

	How to write?

	Maintain Website
	Prerequisites

	Step 1: Include your markdown file

	Step 2: Update the index.rst

	Step 3: Commit and push to GitHub

How to ask for help

The GitHub issue tracker [https://github.com/zzheng93/pl-cee202-docs/issues] is the primary place for bug reports.

How to Access PrairieLearn?

	Access PrairieLearn by going to: https://prairielearn.engr.illinois.edu

	Enter your netID and password

	You’re in!

How to Run PrairieLearn?

For more information, please check HERE [https://prairielearn.readthedocs.io/en/latest/installing/].

Install and check (for first time users)

	Step 1: Install Docker Community Edition [https://www.docker.com/community-edition].

	Step 2: Open a terminal, such as iTerm2 [https://www.iterm2.com/] (on MacOS/Linux), and run PrairieLearn using the example course with

docker run -it --rm -p 3000:3000 prairielearn/prairielearn

	Step 3: Open a web browser and connect to http://localhost:3000/pl

	Step 4: Click the button Load from disk in the upper right, then play with it.

	Step 5: When you are finished with PrairieLearn, type Control-C on the commandline where your ran the server to stop it.

Routine work

	Step 1: Upgrade your Docker’s version on PrairieLearn

docker pull prairielearn/prairielearn

	Step 2: To use your own course, use the -v flag to bind the Docker /course directory with your own course directory (replace the precise path with your own).

on Windows:

docker run -it --rm -p 3000:3000 -v C:\GitHub\pl-cee202:/course prairielearn/prairielearn

or on MacOS/Linux:

docker run -it --rm -p 3000:3000 -v /Users/zzheng25/git/pl-cee202:/course prairielearn/prairielearn

	Step 3: Open a web browser and connect to http://localhost:3000/pl

	Step 4: Click the button Load from disk in the upper right, then work on it.

	Step 5: When you are finished with PrairieLearn, type Control-C on the commandline where your ran the server to stop it.

Numerical Answers with R

This page is specific to the R questions (without coding). The objectives are:

	Use the necessary R function in the server.py to generate the solutions, and grade the questions

	Specify the randomized variables in the server.py

	Specify the specific files (e.g., figure) in the server.py

Overview

The easiest way to create a R question (without coding) is by copying an existing R question, and change certain files. Then you don’t need to create the UUID [https://www.uuidgenerator.net/] by yourself.

Note: Each UUID will be assigned to a question only.

Step 1: Copy a R question

	Follow the Step 1 to Step 4 in the Routine work [https://pl-cee202-docs.readthedocs.io/en/latest/page/setup.html#routine-work]. Then click PrarieLearn logo (next to Admin) in the upper left.

	Click a course such as CEE 202: Engineering Risk & Uncertainty in the Courses (not Course instances) list.

	Click the Questions (next to Issues) on the top line.

	Find a question you want to copy (for example: AS4_Prob5_2020_AngTang).

	Click Settings between Preview and Statistics.

	Click Make a copy of this question

	Click Change QID

Step 2: Modify the questions

Before you modifying the question, I strongly suggest creating a spreadsheet to keep track of the questions (including title, topic, tags) and corresponding UUID.

Note: Each question folder contain the following files

	Folder/File Name
	Usage

	info.json
	The information of the question such as title, topic, tags, and uuid.

	question.html
	The main body of the question

	server.py
	The solution to the question, but it also species

	clientFilesQuestion
	Save the figures for the question.

	clientFilesQuestion/dist.png

 Numerical Answers with Python

Numerical Answers with Python

This page is specific to the Python questions (without coding). The objectives are:

	Use the necessary Python function in the server.py to generate the solutions, and grade the questions

	Specify the randomized variables in the server.py

	Specify the specific files (e.g., figure) in the server.py

Overview

The easiest way to create a Python question (without coding) is by copying an existing question (either Python or R), and change certain files. Then you don’t need to create the UUID [https://www.uuidgenerator.net/] by yourself.

Note: Each UUID will be assigned to a question only.

Step 1: Copy a question

	Follow the Step 1 to Step 4 in the Routine work [https://pl-cee202-docs.readthedocs.io/en/latest/page/setup.html#routine-work]. Then click PrarieLearn logo (next to Admin) in the upper left.

	Click a course such as CEE 202: Engineering Risk & Uncertainty in the Courses (not Course instances) list.

	Click the Questions (next to Issues) on the top line.

	Find a question you want to copy (for example: AS4_Prob5_2020_AngTang).

	Click Settings between Preview and Statistics.

	Click Make a copy of this question

	Click Change QID

Step 2: Modify the questions

Before you modifying the question, I strongly suggest creating a spreadsheet to keep track of the questions (including title, topic, tags) and corresponding UUID.

Note: Each question folder contain the following files

	Folder/File Name
	Usage

	info.json
	The information of the question such as title, topic, tags, and uuid.

	question.html
	The main body of the question

	server.py
	The solution to the question, but it also species

	clientFilesQuestion
	Save the figures for the question.

	clientFilesQuestion/dist.png

 Multiple Choice

Multiple Choice

Reference: (link [https://prairielearn.readthedocs.io/en/latest/elements/#pl-multiple-choice-element])

The multiple choice only requires you to modify:

	Folder/File Name
	Usage

	if this is a standalone problem: info.json
	The information of the question such as title, topic, tags, and uuid.

	if you want have conditional answers: server.py
	Set up the condition for answers

	question.html
	The main body of the question

A pl-multiple-choice element selects one correct answer and zero or more
incorrect answers and displays them in a random order as radio buttons.

An example of the question.html

<pl-question-panel>
	<p>
	This is the problem statement.
	</p>
</pl-question-panel>

<pl-question-panel><hr></pl-question-panel>
<pl-question-panel>
	<p>
	 (a) 1+1=?
	</p>
</pl-question-panel>

<div class="card my-2">
 <div class="card-body">
 <pl-question-panel>
 <p>
 The answer is:
 </p>
 </pl-question-panel>

 <pl-multiple-choice answers-name="answer_a" weight="2">
 	<pl-answer correct="false"> 1 </pl-answer>
		 	<pl-answer correct="false"> 3 </pl-answer>
		 	<pl-answer correct="true"> 2 </pl-answer>
 </pl-multiple-choice>
 </div>
</div>

The problem will be:

[image: ../../_images/pl-multiple-choice-problem.png]pl-multiple-choice

When you clicked the correct answer:

[image: ../../_images/pl-multiple-choice-answer.png]pl-multiple-choice

Conditional Answers

Assume we want to have conditional answers, for instance, the answers of the multiple choice depend on the previous answer. Here we have an example, the p-value is calculated from previous answer (we omiss how to get p, but use the function sample as an example). Here the p (in Python is p, in R is p_r, use the function ans=list(...) to convert) value could be 0.5 or 0.005. The idea is:

If p<0.01, the correct answer is True (reject), and vice versa.

server.py

Please note the order for the conditional answers, otherwise the commands data['correct_answers'] = ans and data["params"] = ans will overwrite your conditional answers.

import prairielearn as pl
def generate(data):
 values = robjects.r("""
 p_r = sample(c(0.005,0.5),1)

 # Export
 list(
 ans = list(p=round(p_r,digits=3))
)
 """)

 ans = values[0]
 # Convert from R lists to python dictionaries
 ans = { key : ans.rx2(key)[0] for key in ans.names }
 # Setup output dictionaries
 data['correct_answers'] = ans
 data["params"] = ans
		
 # Here is the start for the conditional answers
 if data['correct_answers']["p"]<0.01:
 # The option "True" in question.html is correct
 data['params']["answer_b_true"] = True
 data['params']["answer_b_false"] = False
 else:
 # The option "True" in question.html is incorrect
 data['params']["answer_b_true"] = False
 data['params']["answer_b_false"] = True

question.html

<pl-question-panel><hr></pl-question-panel>
<pl-question-panel>
 <p>
 (b) If the p-value is ${{params.p}}$, we should reject H_0
 </p>
</pl-question-panel>

<div class="card my-2">
 <div class="card-body">
 <pl-question-panel>
 <p>
 The answer is:
 </p>
 </pl-question-panel>

 <pl-multiple-choice answers-name="answer_b" weight="2">
 <pl-answer correct="{{params.answer_b_true}}"> True </pl-answer>
 <pl-answer correct="{{params.answer_b_false}}"> False </pl-answer>
 </pl-multiple-choice>
 </div>
</div>

Appearance

	If p-value is 0.005

[image: ../../_images/pl-multiple-choice-random_true.png]pl-multiple-choice

	If p-value is 0.5

[image: ../../_images/pl-multiple-choice-random_false.png]pl-multiple-choice

Customizations

	Attribute
	Type
	Default
	Description

	answers-name
	string
	—
	Variable name to store data in.

	weight
	integer
	1
	Weight to use when computing a weighted average score over elements.

	inline
	boolean
	false
	List answer choices on a single line instead of as separate paragraphs.

	number-answers
	integer
	special
	The total number of answer choices to display. Defaults to displaying one correct answer and all incorrect answers.

	fixed-order
	boolean
	false
	Disable the randomization of answer order.

Inside the pl-multiple-choice element, each choice must be specified with
a pl-answer that has attributes:

	Attribute
	Type
	Default
	Description

	correct
	boolean
	false
	Is this a correct answer to the question?

 Checkbox

Checkbox

Reference: (link [https://prairielearn.readthedocs.io/en/latest/elements/#pl-checkbox-element])

The checkbox only requires you to modify:

	Folder/File Name
	Usage

	if this is a standalone problem: info.json
	The information of the question such as title, topic, tags, and uuid.

	question.html
	The main body of the question

A pl-checkbox allows for one or more choices.
It displays a subset of the answers in a random order as checkboxes.

An example of the question.html

<pl-question-panel>
	<p>
	This is the problem statement.
	</p>
</pl-question-panel>

<pl-question-panel><hr></pl-question-panel>
<pl-question-panel>
	<p>
	 (a) $1+1<$?
	</p>
</pl-question-panel>

<div class="card my-2">
 <div class="card-body">
 <pl-question-panel>
 <p>
 The answer is:
 </p>
 </pl-question-panel>

 <pl-checkbox answers-name="vpos" weight="1">
 <pl-answer correct="true">5</pl-answer>
 <pl-answer correct="true">4</pl-answer>
 <pl-answer> 1</pl-answer>
 <pl-answer correct="true">3</pl-answer>
 <pl-answer> 2</pl-answer>
 </pl-checkbox>
 </div>
</div>

The problem will be:

[image: ../../_images/pl-checkbox-problem.png]pl-multiple-choice

When you clicked the correct answer:

[image: ../../_images/pl-checkbox-answer.png]pl-multiple-choice

 Another example question R autograder

Another example question R autograder

By Neetesh Sharma (Department of CEE, University of Illinois, Urbana-Champaign, IL, USA)

About

This is just a minimalistic run through for an example R auto-graded question in Prairie Learn. The question I explain has both auto-graded and manually graded elements. The QID is HW8_SP2020_part1_autograde_code.

Directory Structure

HW8_SP2020_part1_autograde_code
│ info.json
│ part1_in.R
│ part1_obs_in.R
│ question.html
│
└───tests
 │ part1.R
 │ points.json
 │
 └───tests
 test_00.R
 test_01.R
 test_02.R
 test_03.R
 test_04.R
 test_05.R
 test_06.R
 test_07.R
 test_08.R
 test_09.R
 test_10.R
 test_11.R

Explaining the files

info.json

{
 "uuid": "09b1ad17-f022-4189-b5ce-250743b8f969",
 "title": "Exercise 1: Drawing random numbers-1",
 "topic": "Basic R simulation",
 "tags": ["SP20","easy","Sotiria","code"],
 "type": "v3",
 "singleVariant": true,
 "gradingMethod": "External",
 "externalGradingOptions": {
 "enabled": true,
 "image": "stat430/pl",
 "serverFilesCourse": ["r_autograder/"],
 "entrypoint": "/grade/serverFilesCourse/r_autograder/run.sh",
 "timeout": 60
 }
}

If you are coding a new problem while using the same autograder, the things to change would be the uuid, title, topic, tags, and timeout under the externalGradingOptions. The timeout is the time in seconds that is allowed for each student submission to be processed. Submission is considered incorrect if it runs longer than the timeout duration. Try to keep it minimum (typically 5 to 10 seconds for a small problem, simulations take longer).

question.html

<div class="card my-2">
 <div class="card-header">
 Exercise
 </div>

 <div class="card-body">

 <pl-question-panel>
	 <p>
	 Set the seed equal to 61820. Generate $5, 50, 500, 5,000, 50,000, 5,000,000$ numbers from a $\text{Binomial distribution with } (n=100, p=0.4)$ and assign them to variables named $b1, b2, b3, b4, b5, b6$ respectively. Also generate the same amount of numbers from a $\text{Poisson distribution with } (λ=40)$ and assign them to variables named $p1, p2, p3, p4, p5, p6$. Plot the outputs from each experiment in histograms, using function <code>hist()</code>.
	 </p>
	 <p>You may use <code>par(mfrow=c(2,6))</code>, just before the <code>hist()</code> functions, to organize your graphs in 2 rows of 6 plots for easier comparison. This will result in one row for the Binomial histograms and one row for the corresponding (in terms of number of random numbers generated) Poisson histograms.</p>
	 <pl-file-editor file-name="part1_stu.R" ace-mode="ace/mode/r" source-file-name="part1_in.R"></pl-file-editor>
		</pl-question-panel>
	<pl-submission-panel>
	 <pl-file-preview></pl-file-preview>
	 <pl-external-grader-results></pl-external-grader-results>
	</pl-submission-panel>
 </div>
</div>

<div class="card my-2">
 <div class="card-header">
 Observation
 </div>

 <div class="card-body">

 <pl-question-panel>
	 <p>
	 What did you observe from the above experiments? Write as a comment (as R comment) in the following window.
	 </p>
 <pl-file-editor file-name="part1_obs.R" ace-mode="ace/mode/python" source-file-name="part1_obs_in.R" min-lines="3" auto-resize="true">
 </pl-file-editor>
 </div>
</div>

<div class="card my-2">
 <div class="card-header">
 Plot
 </div>

 <div class="card-body">

 <pl-question-panel>
	 <p>
	 Upload a PDF of the plot generated from your code. Using the following link. Name of the PDF file must be part1_plots.pdf. (Once you have created the plots in R, look just above the plots to see and click the Export tab, which has the option to export the plots to a .pdf file).
	 </p>
	 <pl-file-upload file-names="part1_plots.pdf"></pl-file-upload>

	<pl-submission-panel>
	 <pl-file-preview></pl-file-preview>
	 <pl-external-grader-results></pl-external-grader-results>
	</pl-submission-panel>
 </div>
</div>

This is a three part questions, the first card shows the autograded portion. The second card is the manually graded comment, and the third card is the manually graded .pdf plot file.

Specifically in the code snippet

	 <pl-file-editor file-name="part1_stu.R" ace-mode="ace/mode/r" source-file-name="part1_in.R"></pl-file-editor>

the file-name variable is the what the student submission will be saved as, whereas source-file-name

is the starter code which the students will see, and that we need to provide.

part1_in.R

Enter code below

part1_obs_in.R

Enter comment

These are the starter code the students see in the code input window for each card respectively.

Directory test

This directory is only relevant to the autograded portion of the question.

First the two files:

part1.R

set.seed(61820)
b1 = rbinom(5,size=100,prob=0.4)
b2 = rbinom(50,size=100,prob=0.4)
b3 = rbinom(500,size=100,prob=0.4)
b4 = rbinom(5000,size=100,prob=0.4)
b5 = rbinom(50000,size=100,prob=0.4)
b6 = rbinom(5000000,size=100,prob=0.4)
p1 = rpois(5,40)
p2 = rpois(50,40)
p3 = rpois(500,40)
p4 = rpois(5000,40)
p5 = rpois(50000,40)
p6 = rpois(5000000,40)
par(mfrow=c(2,6))
hist(b1)
hist(b2)
hist(b3)
hist(b4)
hist(b5)
hist(b6)
hist(p1)
hist(p2)
hist(p3)
hist(p4)
hist(p5)
hist(p6)

This file contains the code, which is the correct solution of the problem.

points.json

[
 {
 "name":"Test b1",
 "file":"test_00.R",
 "max_points":2
 },

 {
 "name":"Test b2",
 "file":"test_01.R",
 "max_points":2
 },
 {
 "name":"Test b3",
 "file":"test_02.R",
 "max_points":2
 },
 {
 "name":"Test b4",
 "file":"test_03.R",
 "max_points":2
 },
 {
 "name":"Test b5",
 "file":"test_04.R",
 "max_points":2
 },
 {
 "name":"Test b6",
 "file":"test_05.R",
 "max_points":2
 },
 {
 "name":"Test p1",
 "file":"test_06.R",
 "max_points":2
 },
 {
 "name":"Test p2",
 "file":"test_07.R",
 "max_points":2
 },
 {
 "name":"Test p3",
 "file":"test_08.R",
 "max_points":2
 },
 {
 "name":"Test p4",
 "file":"test_09.R",
 "max_points":2
 },
 {
 "name":"Test p5",
 "file":"test_10.R",
 "max_points":2
 },
 {
 "name":"Test p6",
 "file":"test_11.R",
 "max_points":2
 }
]

This file list the name of the unit tests (make them relevant to what you are testing as the student will see which tests the student passed or not and modify their submission accordingly), the name of the file for all the unit test, and the points for passing the unit tests.

The unit tests themselves are in another subdirectory named tests, lets call it the nested directory tests.

Nested Directory tests

I will just explain one of the tests

load student results
Sys.chmod("/grade/student/part1_stu.R", mode="0664")
student <- unix::eval_safe({source("/grade/student/part1_stu.R"); b1}, uid=1001)

load correct results
source("/grade/tests/part1.R")
correct <- b1

#compare
using(ttdo)
expect_equivalent_with_diff(student, correct, mode="unified", format="ansi256")

The unit tests have a simple structure with three steps:

	Load the student results by running the submitted code, and extracting any variable or function evaluation of interest. The complicated way of running the student code is due to security considerations.

	Run the correct source code and extract the corresponding benchmark result.

	Compare the two

Finally the questions renders as follows

[image: ../../_images/render.png]

Closing statement

This example does not follow all the recommended guidelines, for example it is recommended that the student code submission be a function and not a script. However, CEE202 being a beginner course the students are expected to only work with basic scripting. Maybe the question can be improved in future if we wrap the student code in the back end to be run as a function. Furthermore, I would recommend not having different grading methods in the same question, as it confuses the students on the total marks they got, as the manually graded parts are uploaded separately. However, this was among the messiest questions we had so it was a good example to explain various possibilities. Thanks!

Useful link: An R Autograder for PrarieLearn [https://arxiv.org/pdf/2003.06500.pdf]

 Review of autograding example R notebook

Review of autograding example R notebook

By Advai Podduturi (Department of CS, University of Illinois, Urbana-Champaign, IL, USA)

About

This guide will cover how to write a deploy an R notebook as an autogradable assignment on Prairielearn.

Directory Structures

WSXX_Example_Topic
| info.json
| question.html
|
|___tests
| points.json
| | ans1.R
| | ans2.R
| | ans3.R
| |___tests
| | | test1.R
| | | test2.R
| | | test3.R
| |
|___workspace
| | Workbook.ipynb
|

Explaining the files

info.json

{
 "uuid": "09b1ad17-f022-4189-b5ce-250743b8f969",
 "title": "WSXX Example Topic",
 "topic": "Basic R Notebook",
 "tags": [
 "Spring2022",
 "Sotiria",
 "Priyam",
 "CLT",
 "Jupyter"
],
 "type": "v3",
 "singleVariant": true,
 "workspaceOptions": {
 "image": "prairielearn/workspace-jupyterlab",
 "port": 8080,
 "home": "/home/jovyan",
 "rewriteUrl": false,
 "gradedFiles": [
 "Workbook.ipynb"
]
 },
 "gradingMethod": "External",
 "externalGradingOptions": {
 "enabled": true,
 "image": "advai/grader-r-advai",
 "serverFilesCourse": [
 "r_autograder/"
],
 "entrypoint": "/grade/serverFilesCourse/r_autograder/run.sh",
 "timeout": 20
 }
}

If you are coding a new problem while using the same autograder, the things to change would be the uuid, title, topic, tags, and timeout under the externalGradingOptions. The timeout is the time in seconds that is allowed for each student submission to be processed. Submission is considered incorrect if it runs longer than the timeout duration. Try to keep it minimum (typically 5 to 10 seconds for a small problem, simulations take longer).

The R notebook autograder image is stored under advai/grader-r-advai.

question.html

I typically use the same template for this that just displays the button for opening the Prairielearn Jupyter interface.

<pl-question-panel>
 <p>This is a workspace question with an in-browser JupyterLab.
 </p>

 <p>
 In this worksheet, you will be learning about and understanding "Example Topic".
 </p>

 <p>
 Once in the JupyterLab environment, please, open workbook called Workbook.ipynb. After you complete your code in it, save the workbook and come back to this Prairie Learn question window to click Save and Grade button. Ignore the other .ipynb workspace you see. </p>

 <pl-external-grader-variables params-name="names_from_user"></pl-external-grader-variables>

 <pl-workspace></pl-workspace>
</pl-question-panel>

<pl-submission-panel>
 <pl-external-grader-results></pl-external-grader-results>
 <pl-file-preview></pl-file-preview>
</pl-submission-panel>

Subdirectory: tests

points.json

You can define any number of tests you want by just creating more test files under tests/tests. To assign points to these tests, you need to edit the points.json.

[
 {
 "name":"Test 1",
 "file":"test1.R",
 "max_points":1
 },

 {
 "name":"Test 2",
 "file":"test2.R",
 "max_points":3
 },

 {
 "name":"Test 3",
 "file":"test3.R",
 "max_points":5
 }
]

ans1.R

#grade {p1_t0, p1_ta, p1_pvalue}
#1) Fixed probability track
#calculate the t-statistic from the data
p1_alpha<- 0.05 # Alpha Value
p1_xbar <- 1.9 # Sample Mean of 25 trips
p1_mu<- 2.0 # Traditional fuel intensity
p1_s<- 0.2 # Standard deviaion
p1_n<- 25 # Sample size
p1_t0 <- round((p1_xbar - p1_mu)/ (p1_s/p1_n^0.5), 3) # critical value of null

#find the t-value for the significance level 0.05 with n-1 dof
p1_ta <- round(qt(p1_alpha, (p1_n-1), lower.tail=TRUE, log.p=FALSE), 3) # critical value of alternative

p1_pvalue <- round(pt(p1_t0, (p1_n-1), lower.tail=TRUE, log.p=FALSE), 3) # P value

Here we can see that all the supporting variables for the p1_t0, p1_ta, and p1_pvalue computations are available in the ans1.R file. Not including the right variables is a common way to make bugs when autograding R notebooks. Use unique variable names across testX/ansX.R files or they will clash and cause one of the tests to fail.

tests/test1.R
I will only go over one test for brevity but consult the tests folder of any question in the PL-CEE202 question bank for more examples of tests. I will highlight three important notes

	All of the student’s code from the notebook gets written to /grade/student/stcode.R so be sure to source from that location.

	Be sure to add #grade tags to all essential cells so that all the important supporting data is written to grade/student/stcode.R.

	Use unique variable names across tests or they will clash. A common approach is “pX_variable”.

You test code by sourcing the student’s value for a variable and then sourcing the correct value from the ansX.R file. You can compare them using expect_equivalent_with_diff() as shown below.

Sys.chmod("/grade/student/stcode.R", mode="0664")
student_p1_t0 <- unix::eval_safe({source("/grade/student/stcode.R"); p1_t0}, uid=1001)
student_p1_ta <- unix::eval_safe({source("/grade/student/stcode.R"); p1_ta}, uid=1001)
student_p1_pvalue <- unix::eval_safe({source("/grade/student/stcode.R"); p1_pvalue}, uid=1001)

source("/grade/tests/ans1.R")
correct_p1_t0 <- p1_t0
correct_p1_ta <- p1_ta
correct_p1_pvalue <- p1_pvalue

using(ttdo)
expect_equivalent_with_diff(student_p1_t0, correct_p1_t0, mode="unified", format="ansi256")
expect_equivalent_with_diff(student_p1_ta, correct_p1_ta, mode="unified", format="ansi256")
expect_equivalent_with_diff(student_p1_pvalue, correct_p1_pvalue, mode="unified", format="ansi256")

Subdirectory workspace

Workbook.ipynb

It is imperative that the notebook be named “Workbook.ipynb” or the autograder will not pick it up. Typically, notebooks are designed as lesson plans. To grade a cell in the notebook, simply add

#grade

to the top of the cell. Note: if a problem uses variables across multiple cells, then you need #grade tags in all those cells.

Testing gradability of your R Notebook

The intial set up is the hardest/longest part. After that, developing in a local PL env is very easy.

Setting up local development environment

	Install docker [https://docs.docker.com/get-docker/]

	Clone the PL CEE Repo [https://github.com/PrairieLearn/pl-cee202]
Now you should be able to launch a local PL instance by running

./runMe.sh

Adding notebook to course directory

Create a new folder in questions/ for your worksheet and fill out all the relevant content descirbed above. Then you can navigate to http://localhost:3000/ to view your question.

You should also create a copy of the folder and add _filled to the end of the folder name. This is where you safely store your filled notebook without risk of leaking it to students. Make sure to change the uuid in the info.json or it will clash with the original problem in PL.

Testing

It’s important to test that each individual question grades since students will work incrementally. Launch the question and replace each cell block with the filled cell block and grade to ensure the question is being graded properly.

Deploying to live PL

Final Thoughts

questions/WS13_Central_Limit_Theorem is a great example question to reference.

 List of Topics and Tags

List of Topics and Tags

Topics

Reference: (link [https://prairielearn.readthedocs.io/en/latest/course/#topics])

Each question in the course has a topic from the list specified in the infoCourse.jsonfile. Topics should be thought of as chapters or sections in a textbook, and there should be about 10 to 30 topics in a typical course. The topic properties are as follows.

	Property
	Description

	name
	Brief name for the topic. Shorter is better. Should be in sentence case (leading captial letter).

	color
	The color scheme for this topic (see below for choices).

	description
	An explanation of what the topic includes, for human referance.

For example, topics could be listed like:

"topics": [
 {"name": "Vectors", "color": "blue3", "description": "Vector algebra in 3D."},
 {"name": "Center of mass", "color": "green3", "description": "Calculating the center of mass for irregular bodies and systems."}
],

Tags

Reference: (link [https://prairielearn.readthedocs.io/en/latest/course/#tags])

 Grade Transfer from PL to Compass

Grade Transfer from PL to Compass

Provided by Sophia Hoang:

	download the gradebook csv files from both PrairieLearn [https://prairielearn.engr.illinois.edu/pl/] (PL) and Compass2g [https://compass2g.illinois.edu/] (compass)

	sort the compass gradebook alphabetically by net id since PL is sorted by netid

	make sure the names on the PL gradebook match up with the compass gradebook

	copy and paste the column of numbers from PL to compass

	upload the updated file back onto compass

 Attendance and muddiest point compilation

Attendance and muddiest point compilation

By Neetesh Sharma

Summary

This is simple python script, which is written to compile data collected by responses from the team based class attendance form and the muddiest point question. The script works with these specific questions and the way prairie learn output csv files look like. The code is hacky and not particularly clean or efficient but anyone with basic idea of file manipulation and scripting in python should be able to read and edit to make it work with different problems.

Description

In this section I will just go through the different parts of the script and give brief descriptions.

-*- coding: utf-8 -*-
"""
Created on Tue Jan 28 14:41:03 2020

@author: nsharm11@illinois.edu
"""
import pandas as pd
import numpy as np
import glob
import Levenshtein as lv

Importing the libraries.

	Pandas for manipulating data in dataframes and input output of csv.

	Numpy for some basic array functions

	Glob to collect files from the student file submission directory

	Levenshtein to calculate the string similarity with input student names and student names in roster to detect and correct spelling mistakes by students in filling their names

###########################
Inputs
###########################
rosterpath = "roster3-25-20.csv"
filespath = "Worksheet22/*.txt"
scorepath = "CEE_202_SPRING2020_WS22_scores_by_username.csv"
max_score = 0
att_outfile = "Attendance_WS_compiled_WS22.csv"
mp_outfile = "Muddiest_point_compiled_WS22.csv"
date = "apr30"

Now we move on to the inputs.

	roster3-25-20.csv is the class roster with the following format:

team,last,first,netid
Team_1,Bellary,Amritha,abella8
Team_1,Barbieri,Giulia,gbarbier
Team_1,Osei,Kweku,kosei2
Team_1,Wiggins,Robert,rjw5
Team_2,Nguyen,Chris,cnguye52
Team_2,Ambrosino,Jack,jackaa2
Team_2,Salam,Shaadmaan,sfsalam2

	filespath is where the “best_files” from PL are located, as obtained from the downloads available on PL

	scorepath is again a csv of scores by username as downloaded from PL

	maxscore is the maximum score in the assessment from the above file (Note that in the current class policy >=50% of the max score earns 100 points and zero otherwise)

	Then there are the preferred names of the outputs and the date of the worksheet being processed

Read the roster and make all possible mapping dicts for convenience

roster=pd.read_csv(rosterpath)
roster['name']=(roster['last']+roster['first'])
roster['name1']=(roster['first']+roster['last'])
roster['name'] = [''.join(filter(str.isalnum, name)).lower().strip().replace(" ","") for name in roster['name']]
roster['name1'] = [''.join(filter(str.isalnum, name)).lower().strip().replace(" ","") for name in roster['name1']]
roster['att'] = 0
roster['score'] = 0
roster['submitting_id'] = ''
roster['check'] = 0

nametoid = {}
idtoname = {}
idtoteam = {}
for i in roster.index:
 nametoid[roster.loc[i,'name']]= roster.loc[i,'netid']
 nametoid[roster.loc[i,'name1']]= roster.loc[i,'netid']
 idtoname[roster.loc[i,'netid']]= roster.loc[i,'name']
 idtoteam[roster.loc[i,'netid']]= roster.loc[i,'team']

teams = roster.groupby('team').groups
teamtonames = {}
teamtoids = {}

for key in teams.keys():
 teamtonames[key] = roster.loc[teams[key],['name','name1']].values.flatten()
 teamtoids[key] = roster.loc[teams[key],'netid'].values
roster.index = roster.netid

We then process the roster and make mappings from id to name and name to id, id to team and team to multiple ids. These will be useful for processing the student inputs. Also, the processed roster dataframe serves as place to report the attendance and scores, and that is why I add numeric columns for 'att', 'score', 'submitting_id', and 'check' in the roster as place holders.

Read submitted files and separate present team member names

flist = glob.glob(filespath)
df1 = pd.DataFrame([chunks(filespath,f) for f in flist])

qgrp=df1.groupby(['question']).groups
dfnames = df1.loc[qgrp['team_names.txt'],:]
dfnames.index = dfnames.netid
dfnames.sort_values(['n2','n3'],ascending=[0,0],inplace=True)

We then read the submitted files and and extract data from the filename as well as the text inside the files. The function chunks performs this procedure for each filename

def chunks(filespath,fname):
 allchunks = fname.split('\\')[-1]
 allchunks = allchunks.split('_')
 semail = allchunks[0]
 ## CHange teh number to extract netid
 netid = semail.split('@')[0]
 if allchunks[5]=='File':
 qname = allchunks[-2]+'_'+allchunks[-1]
 n1 = int(allchunks[1])
 n2 = int(allchunks[7])
 n3 = int(allchunks[8])
 else:
 qname = allchunks[-2]+'_'+allchunks[-1]
 n1 = int(allchunks[1])
 n2 = int(allchunks[7])
 n3 = int(allchunks[8])
 with open(fname,"r") as file1:
 ftxt = file1.read()
 return {
 'netid':netid,
 'question':qname,
 'n1':n1,
 'n2':n2,
 'n3':n3,
 'ftext': np.array(''.join(filter(str.isalnum, ftxt.strip().replace('\n', 'zzz').replace('\r', 'zzz').replace(', ', '').replace(' ', '').lower())).split('zzz')),
 'ftext_ue': ftxt}

This function is the piece which would need editing if the code is to be applied to a different problem, since chunks relies on the position of different type of information at different location inside the filename.

Read scores
score = pd.read_csv(scorepath)
score.columns = ['netid','raw']
score['score'] = 100*(score['raw']>=max_score/2)
score.index = score.netid
score = score.score

We then read the score file as well and create a id to score map.

checkdf = pd.DataFrame([],columns=['Typo', 'netid', 'Correct'])
for netid in dfnames['netid']:
 roster.loc[netid,'att']=1
 roster.loc[netid,'submitting_id']=netid
 roster.loc[netid,'score'] = max(roster.loc[netid,'score'],score[netid])
 names = dfnames.loc[netid,'ftext']
 if type(names) !=type(np.array([])):
 names = names.values[0]
 for name in names:
 try:
 roster.loc[nametoid[name],'att']=1
 roster.loc[nametoid[name],'submitting_id']=netid
 roster.loc[nametoid[name],'score'] = max(roster.loc[nametoid[name],'score'],score[netid])
 except:
 team = idtoteam[netid]
 candidate_names = teamtonames[team]
 foundflag = False
 for cn in candidate_names:
 if lv.distance(cn,name) < 7:
 foundflag = True
 roster.loc[nametoid[cn],'att']=1
 roster.loc[nametoid[cn],'submitting_id']=netid
 roster.loc[nametoid[cn],'score']=max(roster.loc[nametoid[cn],'score'],score[netid])
 roster.loc[nametoid[cn],'check']=1
 checkdf=checkdf.append({'Typo':name, 'netid':netid, 'Correct':cn},ignore_index=True)
 else:
 continue
 if foundflag == False:
 checkdf=checkdf.append({'Typo':name, 'netid':netid, 'Correct':'Not found'},ignore_index=True)

This part of code now gives the attendance to the students listed inside the present team members portion. We first give attendance to the submitting id, we then try to map name to ids using the roster data and if no name to id is found we try to compare with the available ones using the string comparison and try to make corrections. If no correction is found within the search distance, "not found" is reported. We keep track of all the correction we made in a checkdf dataframe.

print("\n Please check these entries and update for 'Not Found' manually \n")
print(checkdf.drop_duplicates())

outdf=roster.loc[:,['team','last','first','att','score','submitting_id']]
outdf=outdf.rename(columns={'att':'att_'+str(date),'score':'score_'+str(date)})
outdf.to_csv(att_outfile,index=False)

dfmpt = df1.loc[qgrp['team_questions.txt'],:]
dfmpt['team']=[idtoteam[netid] for netid in dfmpt.loc[:,'netid']]
dfmpt.loc[:,['netid','team','ftext_ue']].to_csv(mp_outfile,index=False)

We then print the corrections we made for a manual check, and then write the output files.

Running the code

Use a GUI such as spyder to run the script. Make sure you are in the relevant working directory and files are in place according to the paths you define in the inputs.

Fill in all the inputs and run the code upto the print out of the checkdf.

[image: ../../_images/Capture.PNG]

Carefully check the printed corrections

[image: ../../_images/check.PNG]

If there are some not founds or something the script got wrong, we need to edit the files submitted by the identified student id manually.

Finally run the code for outputs and processing is done.

 Markdown Introduction

Markdown Introduction

What is Markdown?

According to wiki [https://en.wikipedia.org/wiki/Markdown]:

Markdown is a lightweight markup language [https://en.wikipedia.org/wiki/Lightweight_markup_language] with plain-text-formatting syntax. Its design allows it to be converted to many output formats, but the original tool by the same name only supports HTML [https://en.wikipedia.org/wiki/HTML]. Markdown is often used to format readme files [https://en.wikipedia.org/wiki/README], for writing messages in online discussion forums, and to create rich text [https://en.wikipedia.org/wiki/Formatted_text] using a plain text [https://en.wikipedia.org/wiki/Plain_text] editor [https://en.wikipedia.org/wiki/Text_editor].

How to open and create the Markdown files?

	I recommend using the markdown editor Typora [https://typora.io/], which gives you a seamless experience as both a reader and a writer. It is free fo Windows/MacOS/Linux users.

	But you can use any text editor (such as Notepad++ [https://notepad-plus-plus.org/] on Windows or Sublime Text [https://www.sublimetext.com/3] on MacOS/Linux) to open and create the *.md files.

How to write?

Important: Heading 1 of your markdown file (not your markdown file name) will be the section name showing on the webpage.

To create a markdown-based documentation:

	You are not required to learn any syntax if you are using Typora [https://typora.io/].

	You can learn basic Markdown syntax within 5 mins. See the resources:

	Markdown cheatsheet from Markdown Guide (link [https://www.markdownguide.org/basic-syntax])

	Markdown cheatsheet from GitHub (link [https://guides.github.com/pdfs/markdown-cheatsheet-online.pdf])

	Extended syntax (link [https://www.markdownguide.org/extended-syntax])

 Maintain Website

Maintain Website

Prerequisites

	Fork or Clone the GitHub from https://github.com/zzheng93/pl-cee202-docs

	Have the markdown file *.md ready. This file will be a page for this website

Step 1: Include your markdown file

	Include your markdown file in the folder pl-cee202-docs/source/page/

Note: if your Markdown file name is intro.md, and you want this page to be under the section WEBSITE DEVELOPERS, then the directory of this file is pl-cee202-docs/source/page/web/intro.md.

Step 2: Update the index.rst

Important: Heading 1 of your markdown file (not your markdown file name) will be the section name showing on the webpage.

	Use text editor (such as Notepad++ [https://notepad-plus-plus.org/] on Windows or Sublime Text [https://www.sublimetext.com/3] on MacOS/Linux) to open the index.rst (by the directory pl-cee202-docs/source/index.rst)

	Find the following contents (note: the name will be slightly different).

Contents

.. toctree::
 :maxdepth: 2
 :caption: Students

 page/student/<*.md>

.. toctree::
 :maxdepth: 2
 :caption: Instructors/TAs

 page/instructor_TA/<*.md>

.. toctree::
 :maxdepth: 2
 :caption: Website Developers

 page/web/markdown_intro.md
 page/web/maintain_site.md

	If you want to add your page under the "Website Develops" section in the left panel, add the name page/web/intro.md under the corresponding section :caption: Website Developers. Note the difference. Here you don’t need to include the path prefix "pl-cee202-docs/source/", because you only need to define the relative path [https://support.dtsearch.com/webhelp/dtsearch/relative_paths.htm].

Contents

.. toctree::
 :maxdepth: 2
 :caption: Students

 page/student/<*.md>

.. toctree::
 :maxdepth: 2
 :caption: Instructors/TAs

 page/instructor_TA/<*.md>

.. toctree::
 :maxdepth: 2
 :caption: Website Developers

 page/web/markdown_intro.md
 page/web/maintain_site.md
 page/web/intro.md

Step 3: Commit and push to GitHub

	If you have the access permission to this GitHub, you can commit push.

	If you don’t have the permission, you can always create a pull request (how to creat a pull request? [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request]).

 Index

Index

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/pl-multiple-choice-random_false.png
(b) If the p-value is 0.5, we should reject Hy

The answer is:

O (@) True
0 (b) False

_images/pl-multiple-choice-random_true.png
(b) If the p-value is 0.005, we should reject Hy

The answer is:

0 (a) True
(b) False

_images/pl-multiple-choice-answer.png
CIPreview ¥ Settings L Statistics

multiple choice example

This is the problem statement.
() 141=?

The answer is:

_images/pl-multiple-choice-problem.png
CPreview % Settings

multiple choice example

This is the problem statement.
() 141=?

The answer is:

C@s3
SICH
OE1

_images/render.png
S e s IS, Gt 5,50, 50,5,00, 50,00, 5,000, 00 s
Bisonial distbotion with (1 = 100, = 0.0 o s he o i s
180,14, sl A et h e o rers .
Poisondistrbtion with . =) s i 1 sl e, 2,7, 1.9t

Sy 3,6, et) i, g e g 2 0
s i . Tl et o oo . ettt . o o
oo e of o s et oo o,

e

W ey b o th s et Wi 3 o o) e lnin

o ——

Ul P0F fhe ot g s coe Using e i k. e o e POE e st
ot plos . Onceyou hve crsc el . ok st v h s e ik e
o i e cpn o rpr e it 3 5 .

| e ——

ser:

et

Question:
a0
2020051 80105 con

_static/plus.png

nav.xhtml

 Table of Contents

 		
 PrairieLearn Information for CEE 202 - CEE @ Illinois

 		
 How to Access PrairieLearn?

 		
 How to Run PrairieLearn?

 		
 Install and check (for first time users)

 		
 Routine work

 		
 Numerical Answers with R

 		
 Overview

 		
 Step 1: Copy a R question

 		
 Step 2: Modify the questions

 		
 info.json

 		
 server.py

 		
 question.html

 		
 Alternatives: Integer

 		
 Step 3: Test your questions

 		
 Step 4: Commit and push the changes

 		
 Step 5: Sync and test

 		
 Appendix: Answers from R function output

 		
 Numerical Answers with Python

 		
 Overview

 		
 Step 1: Copy a question

 		
 Step 2: Modify the questions

 		
 info.json

 		
 server.py

 		
 question.html

 		
 Alternatives: Integer

 		
 Step 3: Test your questions

 		
 Step 4: Commit and push the changes

 		
 Step 5: Sync and test

 		
 Multiple Choice

 		
 An example of the question.html

 		
 Conditional Answers

 		
 server.py

 		
 question.html

 		
 Appearance

 		
 Customizations

 		
 Checkbox

 		
 An example of the question.html

 		
 Another example question R autograder

 		
 About

 		
 Directory Structure

 		
 Explaining the files

 		
 Directory test

 		
 Closing statement

 		
 Review of autograding example R notebook

 		
 About

 		
 Directory Structures

 		
 Explaining the files

 		
 Subdirectory: tests

 		
 Subdirectory workspace

 		
 Testing gradability of your R Notebook

 		
 Setting up local development environment

 		
 Adding notebook to course directory

 		
 Testing

 		
 Deploying to live PL

 		
 Final Thoughts

 		
 List of Topics and Tags

 		
 Topics

 		
